|
|
@ -0,0 +1,126 @@ |
|
|
|
#' Retrieves influenza hospitalization statistics from the CDC |
|
|
|
#' |
|
|
|
#' Uses the data source from the |
|
|
|
#' \href{https://gis.cdc.gov/GRASP/Fluview/FluHospRates.html}{CDC FluView} |
|
|
|
#' and provides influenza hospitalization reporting data as a data frame. |
|
|
|
#' |
|
|
|
#' @param area one of "\code{flusurvnet}", "\code{eip}", "\code{ihsp}", or two |
|
|
|
#' digit state abbreviation for an individual site. Exceptions are |
|
|
|
#' New York - Albany ("\code{nya}") and New York - Rochester ("\code{nyr}") |
|
|
|
#' @param age_group a vector of age groups to pull data for. Possible values are: |
|
|
|
#' "\code{overall}", "\code{0-4y}", "\code{5-17y}, "\code{18-49y}, |
|
|
|
#' "\code{50-64y}, "\code{65+y}". |
|
|
|
#' @param years a vector of years to retrieve data for (i.e. \code{2014} for CDC |
|
|
|
#' flu season 2014-2015). Default value is the current year and all |
|
|
|
#' \code{years} values should be >= \code{2009} |
|
|
|
#' @return A single \code{data.frame}. |
|
|
|
#' @note There is often a noticeable delay when making the API request to the CDC. |
|
|
|
#' This is not due to a large download size, but the time it takes for their |
|
|
|
#' servers to crunch the data. Wrap the function call in \code{httr::with_verbose} |
|
|
|
#' if you would like to see what's going on. |
|
|
|
#' @export |
|
|
|
#' @examples \dontrun{ |
|
|
|
#' # All of FluSurv-NET, 50-64 years old, 2010/11-2014/15 flu seasons |
|
|
|
#' flu <- get_hosp_data("flusurvnet", "50-64y", years=2010:2014) |
|
|
|
#' } |
|
|
|
get_hosp_data <- function(area="flusurvnet", age_group="overall", |
|
|
|
years=as.numeric(format(Sys.Date(), "%Y")) - 1) { |
|
|
|
|
|
|
|
area <- tolower(area) |
|
|
|
age_group <- tolower(age_group) |
|
|
|
|
|
|
|
if (!(area %in% c("flusurvnet", "eip", "ihsp", "ca", "co", "ct", "ga", "md", |
|
|
|
"mn", "nm", "nya", "nyr", "or", "tn", "id", "ia", "mi", |
|
|
|
"oh", "ok", "ri", "sd", "ut"))) |
|
|
|
stop("Error: area must be one of flusurvnet, eip, ihsp, or a valid state abbreviation") |
|
|
|
|
|
|
|
if (length(area) != 1) |
|
|
|
stop("Error: can only select one area") |
|
|
|
|
|
|
|
if (!all(age_group %in% c("overall", "0-4y", "5-17y", "18-49y", |
|
|
|
"50-64y", "65+y"))) |
|
|
|
stop("Error: invalid age group specified") |
|
|
|
|
|
|
|
if (any(years < 2009)) |
|
|
|
stop("Error: years should be >= 2009") |
|
|
|
|
|
|
|
# Match names of age groups to numbers for API |
|
|
|
age_match <- data.frame(age_group = c("overall", "0-4y", "5-17y", |
|
|
|
"18-49y", "50-64y", "65+y"), |
|
|
|
code = c(6, 1, 2, 3, 4, 5)) |
|
|
|
|
|
|
|
age_group_num <- age_match$code[age_match$age_group %in% age_group] |
|
|
|
|
|
|
|
|
|
|
|
# format the input parameters to fit the CDC API |
|
|
|
|
|
|
|
years <- years - 1960 |
|
|
|
|
|
|
|
area_match <- data.frame(area = c("flusurvnet", "eip", "ca", "co", "ct", |
|
|
|
"ga", "md", "mn", "nm", "nya", "nyr", "or", |
|
|
|
"tn", "ihsp", "id", "ia", "mi", "oh", "ok", |
|
|
|
"ri", "sd", "ut"), |
|
|
|
catch = c(22, 22, 1, 2, 3, 4, 7, 9, 11, 13, 14, 17, |
|
|
|
20, 22, 6, 5, 8, 15, 16, 18, 19, 21), |
|
|
|
network = c(1, rep(2, 12), rep(3, 9))) |
|
|
|
|
|
|
|
# Format years |
|
|
|
year_list <- lapply(seq_along(years), |
|
|
|
function(x) list(ID = years[x])) |
|
|
|
|
|
|
|
# Format age group |
|
|
|
age_list <- lapply(seq_along(age_group_num), |
|
|
|
function(x) list(ID = age_group_num[x])) |
|
|
|
|
|
|
|
params <- list(AppVersion = "Public", |
|
|
|
agegroups = age_list, |
|
|
|
catchmentid = area_match$catch[area_match$area == area], |
|
|
|
networkid = area_match$network[area_match$area == area], |
|
|
|
seasons = year_list) |
|
|
|
|
|
|
|
out_file <- tempfile(fileext=".json") |
|
|
|
|
|
|
|
# CDC API returns a ZIP file so we grab, save & expand it to then read in CSVs |
|
|
|
|
|
|
|
tmp <- httr::POST("https://gis.cdc.gov/GRASP/Flu3/PostPhase03DownloadData", |
|
|
|
body = params, |
|
|
|
encode = "json", |
|
|
|
httr::write_disk(out_file, overwrite = T)) |
|
|
|
|
|
|
|
httr::stop_for_status(tmp) |
|
|
|
|
|
|
|
if (!(file.exists(out_file))) |
|
|
|
stop("Error: cannot process downloaded data") |
|
|
|
|
|
|
|
file <- jsonlite::fromJSON(out_file)[[1]] |
|
|
|
|
|
|
|
# pb <- dplyr::progress_estimated(length(file)) |
|
|
|
# purrr::map(file, function(x) { |
|
|
|
# pb$tick()$print() |
|
|
|
# ct <- ifelse(grepl("who", x, ignore.case=TRUE), 1, 1) |
|
|
|
# suppressMessages(readr::read_csv(x, skip=ct)) |
|
|
|
# }) -> file_list |
|
|
|
|
|
|
|
# names(file_list) <- substr(basename(files), 1, nchar(basename(files)) - 4) |
|
|
|
|
|
|
|
# Depending on the parameters, there could be more than one |
|
|
|
# file returned. When there's only one, return a more usable |
|
|
|
# structure. |
|
|
|
|
|
|
|
# when no rows, then it's likely the caller specified the |
|
|
|
# current year and the flu season has technically not started yet. |
|
|
|
# so help them out and move the year back and get current flu |
|
|
|
# season data. |
|
|
|
|
|
|
|
if ((nrow(file) == 0) && |
|
|
|
(length(years)==1) && |
|
|
|
(years == (as.numeric(format(Sys.Date(), "%Y"))-1960))) { |
|
|
|
|
|
|
|
message("Adjusting [years] to get current season...") |
|
|
|
return(get_hosp_data(area=area, age_group=age_group, |
|
|
|
years=years+1960-1)) |
|
|
|
} else { |
|
|
|
return(file) |
|
|
|
} |
|
|
|
|
|
|
|
} |