You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
boB Rudis 601179e949
mmwr tweaks
3 years ago
R mmwr tweaks 3 years ago
README_files README examples 3 years ago
crunch Census region dataset 5 years ago
data Census region dataset 5 years ago
man mmwr tweaks 3 years ago
tests enhancements to maps and incorporating MMWR week calcs 3 years ago
.Rbuildignore new API coverage & CRAN checks 3 years ago
.codecov.yml initial commit 3 years ago
.gitignore initial commit 3 years ago
.travis.yml fixing Travis due to new sf dep 3 years ago
CONDUCT.md new API coverage & CRAN checks 3 years ago
DESCRIPTION enhancements to maps and incorporating MMWR week calcs 3 years ago
LICENSE initial commit 6 years ago
NAMESPACE mmwr tweaks 3 years ago
NEWS.md fixing git 3 years ago
README.Rmd enhancements to maps and incorporating MMWR week calcs 3 years ago
README.md enhancements to maps and incorporating MMWR week calcs 3 years ago
cdcfluview.Rproj fixing git 3 years ago
codecov.yml added code coverage 4 years ago
cran-comments.md pre-CRAN flight check 4 years ago

README.md

CRAN\_Status\_Badge Travis-CI BuildStatus CoverageStatus

I M P O R T A N T

The CDC migrated to a new non-Flash portal and back-end APIs changed. This is a complete reimagining of the package and — as such — all your code is going to break. Please use GitHub issues to identify previous API functionality you would like ported over. There’s a release candidate for 0.5.2 which uses the old API but it likely to break in the near future given the changes to the hidden API. You can do what with devtools::install_github("hrbrmstr/cdcfluview", ref="58c172b").

All folks providing feedback, code or suggestions will be added to the DESCRIPTION file. Please include how you would prefer to be cited in any issues you file.

If there’s a particular data set from https://www.cdc.gov/flu/weekly/fluviewinteractive.htm that you want and that isn’t in the package, please file it as an issue and be as specific as you can (screen shot if possible).

😷 cdcfluview

Retrieve U.S. Flu Season Data from the CDC FluView Portal

Description

The U.S. Centers for Disease Control (CDC) maintains a portal http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html for accessing state, regional and national influenza statistics as well as Mortality Surveillance Data. The Flash interface makes it difficult and time-consuming to select and retrieve influenza data. This package provides functions to access the data provided by the portal’s underlying API.

What’s Inside The Tin

The following functions are implemented:

  • agd_ipt: Age Group Distribution of Influenza Positive Tests Reported by Public Health Laboratories
  • cdc_coverage_map: Retrieve CDC U.S. Coverage Map
  • geographic_spread: State and Territorial Epidemiologists Reports of Geographic Spread of Influenza
  • hospitalizations: Laboratory-Confirmed Influenza Hospitalizations
  • ilinet: Retrieve ILINet Surveillance Data
  • ili_weekly_activity_indicators: Retrieve weekly state-level ILI indicators per-state for a given season
  • pi_mortality: Pneumonia and Influenza Mortality Surveillance
  • state_data_providers: Retrieve metadata about U.S. State CDC Provider Data
  • surveillance_areas: Retrieve a list of valid sub-regions for each surveillance area.
  • who_nrevss: Retrieve WHO/NREVSS Surveillance Data

The following data sets are included:

  • hhs_regions HHS Region Table (a data frame with 59 rows and 4 variables)
  • census_regions Census Region Table (a data frame with 51 rows and 2 variables)

Installation

devtools::install_github("hrbrmstr/cdcfluview")

Usage

library(cdcfluview)
library(tidyverse)

# current verison
packageVersion("cdcfluview")
## [1] '0.7.0'

Age Group Distribution of Influenza Positive Tests Reported by Public Health Laboratories

glimpse(agd_ipt())
## Observations: 36,144
## Variables: 13
## $ sea_label         <chr> "1997-98", "1997-98", "1997-98", "1997-98", "1997-98", "1997-98", "1997-98", "1997-98", "...
## $ age_label         <chr> "0-4 yr", "0-4 yr", "0-4 yr", "0-4 yr", "0-4 yr", "0-4 yr", "0-4 yr", "0-4 yr", "0-4 yr",...
## $ vir_label         <chr> "A (Subtyping not Performed)", "A (Subtyping not Performed)", "A (Subtyping not Performed...
## $ count             <int> 0, 1, 0, 0, 0, 0, 0, 3, 0, 6, 0, 1, 1, 2, 11, 8, 18, 26, 22, 19, 2, 5, 2, 1, 4, 0, 0, 0, ...
## $ mmwrid            <int> 1866, 1867, 1868, 1869, 1870, 1871, 1872, 1873, 1874, 1875, 1876, 1877, 1878, 1879, 1880,...
## $ seasonid          <int> 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 3...
## $ publishyearweekid <int> 2913, 2913, 2913, 2913, 2913, 2913, 2913, 2913, 2913, 2913, 2913, 2913, 2913, 2913, 2913,...
## $ sea_description   <chr> "Season 1997-98", "Season 1997-98", "Season 1997-98", "Season 1997-98", "Season 1997-98",...
## $ sea_startweek     <int> 1866, 1866, 1866, 1866, 1866, 1866, 1866, 1866, 1866, 1866, 1866, 1866, 1866, 1866, 1866,...
## $ sea_endweek       <int> 1918, 1918, 1918, 1918, 1918, 1918, 1918, 1918, 1918, 1918, 1918, 1918, 1918, 1918, 1918,...
## $ vir_description   <chr> "A-Unk", "A-Unk", "A-Unk", "A-Unk", "A-Unk", "A-Unk", "A-Unk", "A-Unk", "A-Unk", "A-Unk",...
## $ vir_startmmwrid   <int> 1397, 1397, 1397, 1397, 1397, 1397, 1397, 1397, 1397, 1397, 1397, 1397, 1397, 1397, 1397,...
## $ vir_endmmwrid     <int> 3131, 3131, 3131, 3131, 3131, 3131, 3131, 3131, 3131, 3131, 3131, 3131, 3131, 3131, 3131,...

Retrieve CDC U.S. Coverage Map

plot(cdc_coverage_map())

State and Territorial Epidemiologists Reports of Geographic Spread of Influenza

glimpse(geographic_spread())
## Observations: 25,795
## Variables: 7
## $ statename         <chr> "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "...
## $ url               <chr> "http://adph.org/influenza/", "http://adph.org/influenza/", "http://adph.org/influenza/",...
## $ website           <chr> "Influenza Surveillance", "Influenza Surveillance", "Influenza Surveillance", "Influenza ...
## $ activity_estimate <chr> "No Activity", "No Activity", "No Activity", "Local Activity", "Sporadic", "Sporadic", "S...
## $ weekend           <date> 2003-10-04, 2003-10-11, 2003-10-18, 2003-10-25, 2003-11-01, 2003-11-08, 2003-11-15, 2003...
## $ season            <chr> "2003-04", "2003-04", "2003-04", "2003-04", "2003-04", "2003-04", "2003-04", "2003-04", "...
## $ weeknumber        <chr> "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "1", ...

Laboratory-Confirmed Influenza Hospitalizations

surveillance_areas()
##    surveillance_area               region
## 1            flusurv       Entire Network
## 2                eip           California
## 3                eip             Colorado
## 4                eip          Connecticut
## 5                eip       Entire Network
## 6                eip              Georgia
## 7                eip             Maryland
## 8                eip            Minnesota
## 9                eip           New Mexico
## 10               eip    New York - Albany
## 11               eip New York - Rochester
## 12               eip               Oregon
## 13               eip            Tennessee
## 14              ihsp       Entire Network
## 15              ihsp                Idaho
## 16              ihsp                 Iowa
## 17              ihsp             Michigan
## 18              ihsp                 Ohio
## 19              ihsp             Oklahoma
## 20              ihsp         Rhode Island
## 21              ihsp         South Dakota
## 22              ihsp                 Utah
glimpse(hospitalizations("flusurv"))
## Observations: 1,476
## Variables: 20
## $ mmwrid            <int> 2545, 2546, 2547, 2548, 2549, 2550, 2551, 2552, 2553, 2554, 2555, 2556, 2557, 2558, 2559,...
## $ weeknumber        <int> 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12...
## $ rate              <dbl> 0.0, 0.0, 0.0, 0.1, 0.1, 0.2, 0.3, 0.3, 0.4, 0.6, 0.8, 1.3, 1.7, 2.2, 2.8, 3.6, 4.4, 5.4,...
## $ weeklyrate        <dbl> 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.1, 0.1, 0.1, 0.2, 0.2, 0.4, 0.4, 0.5, 0.5, 0.8, 0.8, 1.0,...
## $ age               <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,...
## $ season            <int> 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5...
## $ weekend           <chr> "2010-10-09", "2010-10-16", "2010-10-23", "2010-10-30", "2010-11-06", "2010-11-13", "2010...
## $ weekstart         <chr> "2010-10-03", "2010-10-10", "2010-10-17", "2010-10-24", "2010-10-31", "2010-11-07", "2010...
## $ year              <int> 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2011, 2011,...
## $ yearweek          <int> 201040, 201041, 201042, 201043, 201044, 201045, 201046, 201047, 201048, 201049, 201050, 2...
## $ seasonid          <int> 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5...
## $ weekendlabel      <chr> "Oct 09, 2010", "Oct 16, 2010", "Oct 23, 2010", "Oct 30, 2010", "Nov 06, 2010", "Nov 13, ...
## $ weekendlabel2     <chr> "Oct-09-2010", "Oct-16-2010", "Oct-23-2010", "Oct-30-2010", "Nov-06-2010", "Nov-13-2010",...
## $ age_label         <chr> "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-4...
## $ sea_label         <chr> "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "...
## $ sea_description   <chr> "Season 2010-11", "Season 2010-11", "Season 2010-11", "Season 2010-11", "Season 2010-11",...
## $ sea_startweek     <int> 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545,...
## $ sea_endweek       <int> 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596,...
## $ surveillance_area <chr> "FluSurv-NET", "FluSurv-NET", "FluSurv-NET", "FluSurv-NET", "FluSurv-NET", "FluSurv-NET",...
## $ region            <chr> "Entire Network", "Entire Network", "Entire Network", "Entire Network", "Entire Network",...
glimpse(hospitalizations("eip"))
## Observations: 2,385
## Variables: 20
## $ mmwrid            <int> 2545, 2546, 2547, 2548, 2549, 2550, 2551, 2552, 2553, 2554, 2555, 2556, 2557, 2558, 2559,...
## $ weeknumber        <int> 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12...
## $ rate              <dbl> 0.0, 0.0, 0.0, 0.1, 0.1, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.1, 1.4, 1.9, 2.3, 2.8, 3.6, 4.5,...
## $ weeklyrate        <dbl> 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.1, 0.1, 0.1, 0.1, 0.2, 0.4, 0.3, 0.4, 0.4, 0.5, 0.8, 1.0,...
## $ age               <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,...
## $ season            <int> 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5...
## $ weekend           <chr> "2010-10-09", "2010-10-16", "2010-10-23", "2010-10-30", "2010-11-06", "2010-11-13", "2010...
## $ weekstart         <chr> "2010-10-03", "2010-10-10", "2010-10-17", "2010-10-24", "2010-10-31", "2010-11-07", "2010...
## $ year              <int> 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2011, 2011,...
## $ yearweek          <int> 201040, 201041, 201042, 201043, 201044, 201045, 201046, 201047, 201048, 201049, 201050, 2...
## $ seasonid          <int> 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5...
## $ weekendlabel      <chr> "Oct 09, 2010", "Oct 16, 2010", "Oct 23, 2010", "Oct 30, 2010", "Nov 06, 2010", "Nov 13, ...
## $ weekendlabel2     <chr> "Oct-09-2010", "Oct-16-2010", "Oct-23-2010", "Oct-30-2010", "Nov-06-2010", "Nov-13-2010",...
## $ age_label         <chr> "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-4...
## $ sea_label         <chr> "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "...
## $ sea_description   <chr> "Season 2010-11", "Season 2010-11", "Season 2010-11", "Season 2010-11", "Season 2010-11",...
## $ sea_startweek     <int> 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545,...
## $ sea_endweek       <int> 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596,...
## $ surveillance_area <chr> "EIP", "EIP", "EIP", "EIP", "EIP", "EIP", "EIP", "EIP", "EIP", "EIP", "EIP", "EIP", "EIP"...
## $ region            <chr> "Entire Network", "Entire Network", "Entire Network", "Entire Network", "Entire Network",...
glimpse(hospitalizations("eip", "Colorado"))
## Observations: 2,385
## Variables: 20
## $ mmwrid            <int> 2545, 2546, 2547, 2548, 2549, 2550, 2551, 2552, 2553, 2554, 2555, 2556, 2557, 2558, 2559,...
## $ weeknumber        <int> 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12...
## $ rate              <dbl> 0.0, 0.1, 0.1, 0.1, 0.3, 0.3, 0.4, 0.4, 0.5, 0.6, 0.8, 1.3, 1.8, 2.1, 2.6, 3.4, 4.2, 5.6,...
## $ weeklyrate        <dbl> 0.0, 0.1, 0.0, 0.0, 0.2, 0.0, 0.1, 0.1, 0.1, 0.1, 0.2, 0.5, 0.4, 0.4, 0.4, 0.9, 0.8, 1.4,...
## $ age               <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,...
## $ season            <int> 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5...
## $ weekend           <chr> "2010-10-09", "2010-10-16", "2010-10-23", "2010-10-30", "2010-11-06", "2010-11-13", "2010...
## $ weekstart         <chr> "2010-10-03", "2010-10-10", "2010-10-17", "2010-10-24", "2010-10-31", "2010-11-07", "2010...
## $ year              <int> 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2011, 2011,...
## $ yearweek          <int> 201040, 201041, 201042, 201043, 201044, 201045, 201046, 201047, 201048, 201049, 201050, 2...
## $ seasonid          <int> 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5...
## $ weekendlabel      <chr> "Oct 09, 2010", "Oct 16, 2010", "Oct 23, 2010", "Oct 30, 2010", "Nov 06, 2010", "Nov 13, ...
## $ weekendlabel2     <chr> "Oct-09-2010", "Oct-16-2010", "Oct-23-2010", "Oct-30-2010", "Nov-06-2010", "Nov-13-2010",...
## $ age_label         <chr> "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-4...
## $ sea_label         <chr> "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "...
## $ sea_description   <chr> "Season 2010-11", "Season 2010-11", "Season 2010-11", "Season 2010-11", "Season 2010-11",...
## $ sea_startweek     <int> 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545,...
## $ sea_endweek       <int> 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596,...
## $ surveillance_area <chr> "EIP", "EIP", "EIP", "EIP", "EIP", "EIP", "EIP", "EIP", "EIP", "EIP", "EIP", "EIP", "EIP"...
## $ region            <chr> "Colorado", "Colorado", "Colorado", "Colorado", "Colorado", "Colorado", "Colorado", "Colo...
glimpse(hospitalizations("ihsp"))
## Observations: 1,476
## Variables: 20
## $ mmwrid            <int> 2545, 2546, 2547, 2548, 2549, 2550, 2551, 2552, 2553, 2554, 2555, 2556, 2557, 2558, 2559,...
## $ weeknumber        <int> 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12...
## $ rate              <dbl> 0.0, 0.0, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.6, 0.9, 1.1, 1.9, 2.8, 3.9, 4.9, 6.8, 7.6, 9.0,...
## $ weeklyrate        <dbl> 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.1, 0.2, 0.4, 0.2, 0.8, 0.9, 1.1, 1.0, 2.0, 0.8, 1.4,...
## $ age               <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,...
## $ season            <int> 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5...
## $ weekend           <chr> "2010-10-09", "2010-10-16", "2010-10-23", "2010-10-30", "2010-11-06", "2010-11-13", "2010...
## $ weekstart         <chr> "2010-10-03", "2010-10-10", "2010-10-17", "2010-10-24", "2010-10-31", "2010-11-07", "2010...
## $ year              <int> 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2011, 2011,...
## $ yearweek          <int> 201040, 201041, 201042, 201043, 201044, 201045, 201046, 201047, 201048, 201049, 201050, 2...
## $ seasonid          <int> 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5...
## $ weekendlabel      <chr> "Oct 09, 2010", "Oct 16, 2010", "Oct 23, 2010", "Oct 30, 2010", "Nov 06, 2010", "Nov 13, ...
## $ weekendlabel2     <chr> "Oct-09-2010", "Oct-16-2010", "Oct-23-2010", "Oct-30-2010", "Nov-06-2010", "Nov-13-2010",...
## $ age_label         <chr> "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-4...
## $ sea_label         <chr> "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "...
## $ sea_description   <chr> "Season 2010-11", "Season 2010-11", "Season 2010-11", "Season 2010-11", "Season 2010-11",...
## $ sea_startweek     <int> 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545,...
## $ sea_endweek       <int> 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596,...
## $ surveillance_area <chr> "IHSP", "IHSP", "IHSP", "IHSP", "IHSP", "IHSP", "IHSP", "IHSP", "IHSP", "IHSP", "IHSP", "...
## $ region            <chr> "Entire Network", "Entire Network", "Entire Network", "Entire Network", "Entire Network",...
glimpse(hospitalizations("ihsp", "Oklahoma"))
## Observations: 390
## Variables: 20
## $ mmwrid            <int> 2545, 2546, 2547, 2548, 2549, 2550, 2551, 2552, 2553, 2554, 2555, 2556, 2557, 2558, 2559,...
## $ weeknumber        <int> 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12...
## $ rate              <dbl> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.2, 0.4, 0.7, 0.7, 1.3, 2.2, 2.5, 3.4, 4.5, 5.8, 7.6,...
## $ weeklyrate        <dbl> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.2, 0.2, 0.0, 0.7, 0.9, 0.2, 0.9, 1.1, 1.3, 1.8,...
## $ age               <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,...
## $ season            <int> 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5...
## $ weekend           <chr> "2010-10-09", "2010-10-16", "2010-10-23", "2010-10-30", "2010-11-06", "2010-11-13", "2010...
## $ weekstart         <chr> "2010-10-03", "2010-10-10", "2010-10-17", "2010-10-24", "2010-10-31", "2010-11-07", "2010...
## $ year              <int> 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2011, 2011,...
## $ yearweek          <int> 201040, 201041, 201042, 201043, 201044, 201045, 201046, 201047, 201048, 201049, 201050, 2...
## $ seasonid          <int> 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5...
## $ weekendlabel      <chr> "Oct 09, 2010", "Oct 16, 2010", "Oct 23, 2010", "Oct 30, 2010", "Nov 06, 2010", "Nov 13, ...
## $ weekendlabel2     <chr> "Oct-09-2010", "Oct-16-2010", "Oct-23-2010", "Oct-30-2010", "Nov-06-2010", "Nov-13-2010",...
## $ age_label         <chr> "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-49 yr", "18-4...
## $ sea_label         <chr> "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "2010-11", "...
## $ sea_description   <chr> "Season 2010-11", "Season 2010-11", "Season 2010-11", "Season 2010-11", "Season 2010-11",...
## $ sea_startweek     <int> 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545, 2545,...
## $ sea_endweek       <int> 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596, 2596,...
## $ surveillance_area <chr> "IHSP", "IHSP", "IHSP", "IHSP", "IHSP", "IHSP", "IHSP", "IHSP", "IHSP", "IHSP", "IHSP", "...
## $ region            <chr> "Oklahoma", "Oklahoma", "Oklahoma", "Oklahoma", "Oklahoma", "Oklahoma", "Oklahoma", "Okla...

Retrieve ILINet Surveillance Data

ilinet("national")
## # A tibble: 1,048 x 15
##    region_type region  year  week weighted_ili unweighted_ili age_0_4 age_25_49 age_25_64 age_5_24 age_50_64 age_65
##          <chr>  <chr> <int> <int>        <dbl>          <dbl>   <int>     <chr>     <chr>    <int>     <chr>  <int>
##  1    National   <NA>  1997    40      1.10148        1.21686     179      <NA>       157      205      <NA>     29
##  2    National   <NA>  1997    41      1.20007        1.28064     199      <NA>       151      242      <NA>     23
##  3    National   <NA>  1997    42      1.37876        1.23906     228      <NA>       153      266      <NA>     34
##  4    National   <NA>  1997    43      1.19920        1.14473     188      <NA>       193      236      <NA>     36
##  5    National   <NA>  1997    44      1.65618        1.26112     217      <NA>       162      280      <NA>     41
##  6    National   <NA>  1997    45      1.41326        1.28275     178      <NA>       148      281      <NA>     48
##  7    National   <NA>  1997    46      1.98680        1.44579     294      <NA>       240      328      <NA>     70
##  8    National   <NA>  1997    47      2.44749        1.64796     288      <NA>       293      456      <NA>     63
##  9    National   <NA>  1997    48      1.73901        1.67517     268      <NA>       206      343      <NA>     69
## 10    National   <NA>  1997    49      1.93919        1.61739     299      <NA>       282      415      <NA>    102
## # ... with 1,038 more rows, and 3 more variables: ilitotal <int>, num_of_providers <int>, total_patients <int>
ilinet("hhs")
## # A tibble: 10,480 x 15
##    region_type    region  year  week weighted_ili unweighted_ili age_0_4 age_25_49 age_25_64 age_5_24 age_50_64 age_65
##          <chr>     <chr> <int> <int>        <dbl>          <dbl>   <int>     <int>     <int>    <int>     <int>  <int>
##  1 HHS Regions  Region 1  1997    40     0.498535       0.623848      15        NA         7       22        NA      0
##  2 HHS Regions  Region 2  1997    40     0.374963       0.384615       0        NA         3        0        NA      0
##  3 HHS Regions  Region 3  1997    40     1.354280       1.341720       6        NA         7       15        NA      4
##  4 HHS Regions  Region 4  1997    40     0.400338       0.450010      12        NA        23       11        NA      0
##  5 HHS Regions  Region 5  1997    40     1.229260       0.901266      31        NA        24       30        NA      4
##  6 HHS Regions  Region 6  1997    40     1.018980       0.747384       2        NA         1        2        NA      0
##  7 HHS Regions  Region 7  1997    40     0.871791       1.152860       0        NA         4       18        NA      5
##  8 HHS Regions  Region 8  1997    40     0.516017       0.422654       2        NA         0        3        NA      0
##  9 HHS Regions  Region 9  1997    40     1.807610       2.258780      80        NA        76       74        NA     13
## 10 HHS Regions Region 10  1997    40     4.743520       4.825400      31        NA        12       30        NA      3
## # ... with 10,470 more rows, and 3 more variables: ilitotal <int>, num_of_providers <int>, total_patients <int>
ilinet("census")
## # A tibble: 9,432 x 15
##       region_type             region  year  week weighted_ili unweighted_ili age_0_4 age_25_49 age_25_64 age_5_24
##             <chr>              <chr> <int> <int>        <dbl>          <dbl>   <int>     <chr>     <chr>    <int>
##  1 Census Regions        New England  1997    40    0.4985350      0.6238480      15      <NA>         7       22
##  2 Census Regions       Mid-Atlantic  1997    40    0.8441440      1.3213800       4      <NA>         8       12
##  3 Census Regions East North Central  1997    40    0.7924860      0.8187380      28      <NA>        20       28
##  4 Census Regions West North Central  1997    40    1.7640500      1.2793900       3      <NA>         8       20
##  5 Census Regions     South Atlantic  1997    40    0.5026620      0.7233800      14      <NA>        22       14
##  6 Census Regions East South Central  1997    40    0.0542283      0.0688705       0      <NA>         3        0
##  7 Census Regions West South Central  1997    40    1.0189800      0.7473840       2      <NA>         1        2
##  8 Census Regions           Mountain  1997    40    2.2587800      2.2763300      87      <NA>        71       71
##  9 Census Regions            Pacific  1997    40    2.0488300      3.2349400      26      <NA>        17       36
## 10 Census Regions        New England  1997    41    0.6426690      0.8158010      14      <NA>        14       29
## # ... with 9,422 more rows, and 5 more variables: age_50_64 <chr>, age_65 <int>, ilitotal <int>,
## #   num_of_providers <int>, total_patients <int>
ilinet("state")
## # A tibble: 19,718 x 15
##    region_type               region  year  week weighted_ili unweighted_ili age_0_4 age_25_49 age_25_64 age_5_24
##          <chr>                <chr> <int> <int>        <chr>          <chr>   <chr>     <chr>     <chr>    <chr>
##  1      States              Alabama  2010    40         <NA>        2.13477    <NA>      <NA>      <NA>     <NA>
##  2      States               Alaska  2010    40         <NA>       0.875146    <NA>      <NA>      <NA>     <NA>
##  3      States              Arizona  2010    40         <NA>       0.674721    <NA>      <NA>      <NA>     <NA>
##  4      States             Arkansas  2010    40         <NA>       0.696056    <NA>      <NA>      <NA>     <NA>
##  5      States           California  2010    40         <NA>        1.95412    <NA>      <NA>      <NA>     <NA>
##  6      States             Colorado  2010    40         <NA>       0.660684    <NA>      <NA>      <NA>     <NA>
##  7      States          Connecticut  2010    40         <NA>      0.0783085    <NA>      <NA>      <NA>     <NA>
##  8      States             Delaware  2010    40         <NA>       0.100125    <NA>      <NA>      <NA>     <NA>
##  9      States District of Columbia  2010    40         <NA>        2.80877    <NA>      <NA>      <NA>     <NA>
## 10      States              Florida  2010    40         <NA>           <NA>    <NA>      <NA>      <NA>     <NA>
## # ... with 19,708 more rows, and 5 more variables: age_50_64 <chr>, age_65 <chr>, ilitotal <chr>,
## #   num_of_providers <chr>, total_patients <chr>

Retrieve weekly state-level ILI indicators per-state for a given season

ili_weekly_activity_indicators(2017)
## # A tibble: 216 x 9
##    statename ili_activity_label ili_activity_group statefips stateabbr    weekend weeknumber  year seasonid
##        <chr>             <fctr>              <chr>     <chr>     <chr>     <date>      <int> <int>    <int>
##  1   Alabama            Level 2            Minimal        01        AL 2017-10-07         40  2017       57
##  2   Alabama            Level 2            Minimal        01        AL 2017-10-14         41  2017       57
##  3   Alabama            Level 2            Minimal        01        AL 2017-10-21         42  2017       57
##  4   Alabama            Level 3            Minimal        01        AL 2017-10-28         43  2017       57
##  5    Alaska            Level 1            Minimal        02        AK 2017-10-07         40  2017       57
##  6    Alaska            Level 2            Minimal        02        AK 2017-10-14         41  2017       57
##  7    Alaska            Level 4                Low        02        AK 2017-10-21         42  2017       57
##  8    Alaska            Level 3            Minimal        02        AK 2017-10-28         43  2017       57
##  9   Arizona            Level 2            Minimal        04        AZ 2017-10-07         40  2017       57
## 10   Arizona            Level 3            Minimal        04        AZ 2017-10-14         41  2017       57
## # ... with 206 more rows
ili_weekly_activity_indicators(2015)
## # A tibble: 2,807 x 9
##    statename ili_activity_label ili_activity_group statefips stateabbr    weekend weeknumber  year seasonid
##        <chr>             <fctr>              <chr>     <chr>     <chr>     <date>      <int> <int>    <int>
##  1   Alabama            Level 1            Minimal        01        AL 2015-10-10         40  2015       55
##  2   Alabama            Level 1            Minimal        01        AL 2015-10-17         41  2015       55
##  3   Alabama            Level 1            Minimal        01        AL 2015-10-24         42  2015       55
##  4   Alabama            Level 1            Minimal        01        AL 2015-10-31         43  2015       55
##  5   Alabama            Level 1            Minimal        01        AL 2015-11-07         44  2015       55
##  6   Alabama            Level 1            Minimal        01        AL 2015-11-14         45  2015       55
##  7   Alabama            Level 1            Minimal        01        AL 2015-11-21         46  2015       55
##  8   Alabama            Level 3            Minimal        01        AL 2015-11-28         47  2015       55
##  9   Alabama            Level 1            Minimal        01        AL 2015-12-05         48  2015       55
## 10   Alabama            Level 1            Minimal        01        AL 2015-12-12         49  2015       55
## # ... with 2,797 more rows

Pneumonia and Influenza Mortality Surveillance

pi_mortality("national")
## # A tibble: 419 x 19
##    seasonid baseline threshold percent_pni percent_complete number_influenza number_pneumonia all_deaths total_pni
##       <chr>    <dbl>     <dbl>       <dbl>            <dbl>            <dbl>            <dbl>      <dbl>     <dbl>
##  1       57      5.8       6.1       0.054            0.763               10             1962      36283      1972
##  2       57      5.8       6.2       0.056            0.675               10             1795      32107      1805
##  3       56      5.9       6.3       0.059            1.000               18             3022      51404      3040
##  4       56      6.0       6.3       0.061            1.000               11             3193      52130      3204
##  5       56      6.1       6.4       0.062            1.000                7             3178      51443      3185
##  6       56      6.2       6.5       0.061            1.000               17             3129      51865      3146
##  7       56      6.3       6.6       0.060            1.000               16             3099      51753      3115
##  8       56      6.4       6.7       0.061            1.000               19             3208      52541      3227
##  9       56      6.5       6.8       0.060            1.000                7             3192      53460      3199
## 10       56      6.6       6.9       0.062            1.000               22             3257      53163      3279
## # ... with 409 more rows, and 10 more variables: weeknumber <chr>, geo_description <chr>, age_label <chr>,
## #   weekend <date>, weekstart <date>, year <int>, yearweek <int>, coverage_area <chr>, region_name <chr>, callout <chr>
pi_mortality("state")
## # A tibble: 21,788 x 19
##    seasonid baseline threshold percent_pni percent_complete number_influenza number_pneumonia all_deaths total_pni
##       <chr>    <dbl>     <dbl>       <dbl>            <dbl>            <dbl>            <dbl>      <dbl>     <dbl>
##  1       57       NA        NA       0.065            0.836                0               50        772        50
##  2       57       NA        NA       0.064            0.767                0               45        708        45
##  3       57       NA        NA       0.063            0.666                1                2         48         3
##  4       57       NA        NA       0.105            0.527                0                4         38         4
##  5       57       NA        NA       0.053            0.412                0               20        374        20
##  6       57       NA        NA       0.059            0.393                0               21        356        21
##  7       57       NA        NA       0.060            0.751                0               25        420        25
##  8       57       NA        NA       0.050            0.604                0               17        338        17
##  9       57       NA        NA       0.065            0.774                1              228       3510       229
## 10       57       NA        NA       0.059            0.758                2              201       3438       203
## # ... with 21,778 more rows, and 10 more variables: weeknumber <chr>, geo_description <chr>, age_label <chr>,
## #   weekend <date>, weekstart <date>, year <int>, yearweek <int>, coverage_area <chr>, region_name <chr>, callout <chr>
pi_mortality("region")
## # A tibble: 4,190 x 19
##    seasonid baseline threshold percent_pni percent_complete number_influenza number_pneumonia all_deaths total_pni
##       <chr>    <dbl>     <dbl>       <dbl>            <dbl>            <dbl>            <dbl>      <dbl>     <dbl>
##  1       57      6.0       6.7       0.051            0.735                0               85       1683        85
##  2       57      6.1       6.8       0.060            0.701                0               96       1605        96
##  3       57      6.0       6.5       0.061            0.608                1              154       2524       155
##  4       57      6.0       6.6       0.063            0.602                1              157       2497       158
##  5       57      5.3       5.8       0.045            0.511                1              115       2575       116
##  6       57      5.4       5.9       0.045            0.440                1               98       2215        99
##  7       57      5.6       6.0       0.051            0.744                3              394       7753       397
##  8       57      5.7       6.1       0.052            0.651                1              354       6778       355
##  9       57      5.5       5.9       0.052            0.914                1              403       7701       404
## 10       57      5.6       6.0       0.054            0.799                4              358       6733       362
## # ... with 4,180 more rows, and 10 more variables: weeknumber <chr>, geo_description <chr>, age_label <chr>,
## #   weekend <date>, weekstart <date>, year <int>, yearweek <int>, coverage_area <chr>, region_name <chr>, callout <chr>

Retrieve metadata about U.S. State CDC Provider Data

state_data_providers()
## # A tibble: 59 x 5
##               statename                                  statehealthdeptname
##  *                <chr>                                                <chr>
##  1              Alabama                  Alabama Department of Public Health
##  2               Alaska           State of Alaska Health and Social Services
##  3              Arizona                Arizona Department of Health Services
##  4             Arkansas                        Arkansas Department of Health
##  5           California               California Department of Public Health
##  6             Colorado Colorado Department of Public Health and Environment
##  7          Connecticut              Connecticut Department of Public Health
##  8             Delaware                  Delaware Health and Social Services
##  9 District of Columbia            District of Columbia Department of Health
## 10              Florida                         Florida Department of Health
## # ... with 49 more rows, and 3 more variables: url <chr>, statewebsitename <chr>, statefluphonenum <chr>

Retrieve WHO/NREVSS Surveillance Data

who_nrevss("national")
## $combined_prior_to_2015_16
## # A tibble: 940 x 13
##    region_type region  year  week total_specimens percent_positive a_2009_h1n1  a_h1  a_h3 a_subtyping_not_performed
##          <chr>  <chr> <int> <int>           <int>            <dbl>       <int> <int> <int>                     <int>
##  1    National   <NA>  1997    40            1291         0.000000           0     0     0                         0
##  2    National   <NA>  1997    41            1513         0.727032           0     0     0                        11
##  3    National   <NA>  1997    42            1552         1.095360           0     0     3                        13
##  4    National   <NA>  1997    43            1669         0.419413           0     0     0                         7
##  5    National   <NA>  1997    44            1897         0.527148           0     0     9                         1
##  6    National   <NA>  1997    45            2106         0.284900           0     0     0                         6
##  7    National   <NA>  1997    46            2204         0.362976           0     0     3                         4
##  8    National   <NA>  1997    47            2533         0.908014           0     0     5                        17
##  9    National   <NA>  1997    48            2242         1.650310           0     0    14                        22
## 10    National   <NA>  1997    49            2607         1.534330           0     0    11                        28
## # ... with 930 more rows, and 3 more variables: a_unable_to_subtype <int>, b <int>, h3n2v <int>
## 
## $public_health_labs
## # A tibble: 108 x 12
##    region_type region  year  week total_specimens a_2009_h1n1  a_h3 a_subtyping_not_performed     b  bvic  byam h3n2v
##          <chr>  <chr> <int> <int>           <int>       <int> <int>                     <int> <int> <int> <int> <int>
##  1    National   <NA>  2015    40            1139           4    65                         2    10     0     1     0
##  2    National   <NA>  2015    41            1152           5    41                         2     7     3     0     0
##  3    National   <NA>  2015    42            1198          10    50                         1     8     3     2     0
##  4    National   <NA>  2015    43            1244           9    31                         4     9     1     4     0
##  5    National   <NA>  2015    44            1465           4    23                         4     9     1     4     0
##  6    National   <NA>  2015    45            1393          11    34                         1    10     4     2     0
##  7    National   <NA>  2015    46            1458          17    42                         1     4     0     4     0
##  8    National   <NA>  2015    47            1157          17    24                         0     4     3     9     0
##  9    National   <NA>  2015    48            1550          27    36                         3     9     3    12     0
## 10    National   <NA>  2015    49            1518          38    37                         3    11     2    11     0
## # ... with 98 more rows
## 
## $clinical_labs
## # A tibble: 108 x 10
##    region_type region  year  week total_specimens total_a total_b percent_positive percent_a percent_b
##          <chr>  <chr> <int> <int>           <int>   <int>   <int>            <dbl>     <dbl>     <dbl>
##  1    National   <NA>  2015    40           12029      84      43          1.05578  0.698312  0.357469
##  2    National   <NA>  2015    41           13111     116      54          1.29662  0.884753  0.411868
##  3    National   <NA>  2015    42           13441      97      52          1.10855  0.721672  0.386876
##  4    National   <NA>  2015    43           13537      98      52          1.10807  0.723942  0.384132
##  5    National   <NA>  2015    44           14687      97      68          1.12344  0.660448  0.462994
##  6    National   <NA>  2015    45           15048     122      86          1.38224  0.810739  0.571505
##  7    National   <NA>  2015    46           15250      84      98          1.19344  0.550820  0.642623
##  8    National   <NA>  2015    47           15234     119      92          1.38506  0.781147  0.603912
##  9    National   <NA>  2015    48           16201     145      81          1.39498  0.895006  0.499969
## 10    National   <NA>  2015    49           16673     140     106          1.47544  0.839681  0.635758
## # ... with 98 more rows
who_nrevss("hhs")
## $combined_prior_to_2015_16
## # A tibble: 9,400 x 13
##    region_type    region  year  week total_specimens percent_positive a_2009_h1n1  a_h1  a_h3 a_subtyping_not_performed
##          <chr>     <chr> <int> <int>           <int>            <dbl>       <int> <int> <int>                     <int>
##  1 HHS Regions  Region 1  1997    40              51                0           0     0     0                         0
##  2 HHS Regions  Region 2  1997    40             152                0           0     0     0                         0
##  3 HHS Regions  Region 3  1997    40             143                0           0     0     0                         0
##  4 HHS Regions  Region 4  1997    40              98                0           0     0     0                         0
##  5 HHS Regions  Region 5  1997    40             147                0           0     0     0                         0
##  6 HHS Regions  Region 6  1997    40             343                0           0     0     0                         0
##  7 HHS Regions  Region 7  1997    40             133                0           0     0     0                         0
##  8 HHS Regions  Region 8  1997    40              78                0           0     0     0                         0
##  9 HHS Regions  Region 9  1997    40              98                0           0     0     0                         0
## 10 HHS Regions Region 10  1997    40              48                0           0     0     0                         0
## # ... with 9,390 more rows, and 3 more variables: a_unable_to_subtype <int>, b <int>, h3n2v <int>
## 
## $public_health_labs
## # A tibble: 1,080 x 12
##    region_type    region  year  week total_specimens a_2009_h1n1  a_h3 a_subtyping_not_performed     b  bvic  byam
##          <chr>     <chr> <int> <chr>           <int>       <int> <int>                     <int> <int> <int> <int>
##  1 HHS Regions  Region 1  2015    XX              39           0     5                         0     0     0     0
##  2 HHS Regions  Region 2  2015    XX              56           1     4                         0     1     0     0
##  3 HHS Regions  Region 3  2015    XX             132           1     3                         0     0     0     0
##  4 HHS Regions  Region 4  2015    XX              83           0     5                         0     1     0     0
##  5 HHS Regions  Region 5  2015    XX             218           2     7                         0     0     0     1
##  6 HHS Regions  Region 6  2015    XX              97           0     2                         0     0     0     0
##  7 HHS Regions  Region 7  2015    XX              36           0     2                         0     0     0     0
##  8 HHS Regions  Region 8  2015    XX              71           0     2                         0     0     0     0
##  9 HHS Regions  Region 9  2015    XX             273           0    22                         2     8     0     0
## 10 HHS Regions Region 10  2015    XX             134           0    13                         0     0     0     0
## # ... with 1,070 more rows, and 1 more variables: h3n2v <int>
## 
## $clinical_labs
## # A tibble: 1,080 x 10
##    region_type    region  year  week total_specimens total_a total_b percent_positive percent_a percent_b
##          <chr>     <chr> <int> <int>           <int>   <int>   <int>            <dbl>     <dbl>     <dbl>
##  1 HHS Regions  Region 1  2015    40             693       2       3         0.721501  0.288600  0.432900
##  2 HHS Regions  Region 2  2015    40            1220       5       0         0.409836  0.409836  0.000000
##  3 HHS Regions  Region 3  2015    40             896       0       1         0.111607  0.000000  0.111607
##  4 HHS Regions  Region 4  2015    40            2486      24      16         1.609010  0.965406  0.643604
##  5 HHS Regions  Region 5  2015    40            2138      14       3         0.795136  0.654818  0.140318
##  6 HHS Regions  Region 6  2015    40            1774       8      16         1.352870  0.450958  0.901917
##  7 HHS Regions  Region 7  2015    40             621       2       1         0.483092  0.322061  0.161031
##  8 HHS Regions  Region 8  2015    40             824       1       1         0.242718  0.121359  0.121359
##  9 HHS Regions  Region 9  2015    40             980      25       2         2.755100  2.551020  0.204082
## 10 HHS Regions Region 10  2015    40             397       3       0         0.755668  0.755668  0.000000
## # ... with 1,070 more rows
who_nrevss("census")
## $combined_prior_to_2015_16
## # A tibble: 8,460 x 13
##       region_type             region  year  week total_specimens percent_positive a_2009_h1n1  a_h1  a_h3
##             <chr>              <chr> <int> <int>           <int>            <dbl>       <int> <int> <int>
##  1 Census Regions        New England  1997    40              51                0           0     0     0
##  2 Census Regions       Mid-Atlantic  1997    40             155                0           0     0     0
##  3 Census Regions East North Central  1997    40             127                0           0     0     0
##  4 Census Regions West North Central  1997    40             183                0           0     0     0
##  5 Census Regions     South Atlantic  1997    40             204                0           0     0     0
##  6 Census Regions East South Central  1997    40              34                0           0     0     0
##  7 Census Regions West South Central  1997    40             339                0           0     0     0
##  8 Census Regions           Mountain  1997    40              85                0           0     0     0
##  9 Census Regions            Pacific  1997    40             113                0           0     0     0
## 10 Census Regions        New England  1997    41              54                0           0     0     0
## # ... with 8,450 more rows, and 4 more variables: a_subtyping_not_performed <int>, a_unable_to_subtype <int>, b <int>,
## #   h3n2v <int>
## 
## $public_health_labs
## # A tibble: 972 x 12
##       region_type             region  year  week total_specimens a_2009_h1n1  a_h3 a_subtyping_not_performed     b
##             <chr>              <chr> <int> <chr>           <int>       <int> <int>                     <int> <int>
##  1 Census Regions        New England  2015    XX              39           0     5                         0     0
##  2 Census Regions       Mid-Atlantic  2015    XX              63           1     5                         0     1
##  3 Census Regions East North Central  2015    XX              91           2     5                         0     0
##  4 Census Regions West North Central  2015    XX             169           0     4                         0     0
##  5 Census Regions     South Atlantic  2015    XX             187           1     7                         0     0
##  6 Census Regions East South Central  2015    XX              21           0     0                         0     1
##  7 Census Regions West South Central  2015    XX              72           0     2                         0     0
##  8 Census Regions           Mountain  2015    XX             111           0     6                         0     0
##  9 Census Regions            Pacific  2015    XX             386           0    31                         2     8
## 10 Census Regions        New England  2015    XX              39           2     3                         0     0
## # ... with 962 more rows, and 3 more variables: bvic <int>, byam <int>, h3n2v <int>
## 
## $clinical_labs
## # A tibble: 972 x 10
##       region_type             region  year  week total_specimens total_a total_b percent_positive percent_a percent_b
##             <chr>              <chr> <int> <int>           <int>   <int>   <int>            <dbl>     <dbl>     <dbl>
##  1 Census Regions        New England  2015    40             693       2       3         0.721501  0.288600 0.4329000
##  2 Census Regions       Mid-Atlantic  2015    40            1584       5       1         0.378788  0.315657 0.0631313
##  3 Census Regions East North Central  2015    40            1918      13       3         0.834202  0.677789 0.1564130
##  4 Census Regions West North Central  2015    40             978       3       1         0.408998  0.306748 0.1022490
##  5 Census Regions     South Atlantic  2015    40            2403      20      12         1.331670  0.832293 0.4993760
##  6 Census Regions East South Central  2015    40             615       4       4         1.300810  0.650407 0.6504070
##  7 Census Regions West South Central  2015    40            1592       8      16         1.507540  0.502513 1.0050300
##  8 Census Regions           Mountain  2015    40             943       1       1         0.212089  0.106045 0.1060450
##  9 Census Regions            Pacific  2015    40            1303      28       2         2.302380  2.148890 0.1534920
## 10 Census Regions        New England  2015    41             752      11       4         1.994680  1.462770 0.5319150
## # ... with 962 more rows
who_nrevss("state")
## $combined_prior_to_2015_16
## # A tibble: 14,094 x 13
##    region_type               region  year  week total_specimens percent_positive a_2009_h1n1  a_h1  a_h3
##          <chr>                <chr> <int> <int>           <chr>            <chr>       <chr> <chr> <chr>
##  1      States              Alabama  2010    40              54                0           0     0     0
##  2      States               Alaska  2010    40              40                0           0     0     0
##  3      States              Arizona  2010    40              40              2.5           0     0     1
##  4      States             Arkansas  2010    40              15                0           0     0     0
##  5      States           California  2010    40             183             3.28           2     0     3
##  6      States             Colorado  2010    40             126             0.79           0     0     1
##  7      States          Connecticut  2010    40              54                0           0     0     0
##  8      States             Delaware  2010    40              75                4           0     0     3
##  9      States District of Columbia  2010    40              14                0           0     0     0
## 10      States              Florida  2010    40            <NA>             <NA>        <NA>  <NA>  <NA>
## # ... with 14,084 more rows, and 4 more variables: a_subtyping_not_performed <chr>, a_unable_to_subtype <chr>, b <chr>,
## #   h3n2v <chr>
## 
## $public_health_labs
## # A tibble: 162 x 11
##    region_type               region season_description total_specimens a_2009_h1n1  a_h3 a_subtyping_not_performed
##          <chr>                <chr>              <chr>           <chr>       <chr> <chr>                     <chr>
##  1      States              Alabama     Season 2015-16             256          59    16                         1
##  2      States               Alaska     Season 2015-16            4691         607    98                         0
##  3      States              Arizona     Season 2015-16            2110         762   580                         0
##  4      States             Arkansas     Season 2015-16             128          20     8                         0
##  5      States           California     Season 2015-16           12241        1394   825                        28
##  6      States             Colorado     Season 2015-16            1625         912   243                         3
##  7      States          Connecticut     Season 2015-16            1581         662    52                         0
##  8      States             Delaware     Season 2015-16            2754         414    20                        12
##  9      States District of Columbia     Season 2015-16             172          68     3                         0
## 10      States              Florida     Season 2015-16            <NA>        <NA>  <NA>                      <NA>
## # ... with 152 more rows, and 4 more variables: b <chr>, bvic <chr>, byam <chr>, h3n2v <chr>
## 
## $clinical_labs
## # A tibble: 5,832 x 10
##    region_type               region  year  week total_specimens total_a total_b percent_positive percent_a percent_b
##          <chr>                <chr> <int> <int>           <chr>   <chr>   <chr>            <chr>     <chr>     <chr>
##  1      States              Alabama  2015    40             167       2       3             2.99       1.2       1.8
##  2      States               Alaska  2015    40            <NA>    <NA>    <NA>             <NA>      <NA>      <NA>
##  3      States              Arizona  2015    40              55       0       0                0         0         0
##  4      States             Arkansas  2015    40              26       0       1             3.85         0      3.85
##  5      States           California  2015    40             679       2       0             0.29      0.29         0
##  6      States             Colorado  2015    40             255       0       1             0.39         0      0.39
##  7      States          Connecticut  2015    40             304       1       0             0.33      0.33         0
##  8      States             Delaware  2015    40              22       0       0                0         0         0
##  9      States District of Columbia  2015    40            <NA>    <NA>    <NA>             <NA>      <NA>      <NA>
## 10      States              Florida  2015    40            <NA>    <NA>    <NA>             <NA>      <NA>      <NA>
## # ... with 5,822 more rows

Code of Conduct

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.