Writing Frictionless R Package Wrappers

Bob Rudis

2020-01-02

ii

Contents

1 Preface 1
2 Introduction 3
2.1 Base Requirements oL 4
2.2 Supplemental References L. 4
23 UpNext)
3 Building A Basic R Package 7
3.1 Configuring {devtools} oL 7
3.2 Creating A Package 8
3.3 Rounding Out The Corners 9
3.4 Passing The Test 10
3.5 Getting Things Under Control 11
3.6 Quick Referenceo L. 13
3.7 Exercises 13
3.8 UpNext o 14

iii

iv

CONTENTS

Chapter 1

Preface

CHAPTER 1. PREFACE

Chapter 2

Introduction

The R language and RStudio IDE are a powerful combination for “getting stuff
done”; and one aspect of R itself that makes it especially useful is the ability to
use it with other programming languages via a robust foreign language inter-
face capability!. The term “foreign language” refers to another programming
language such as C, C++, Fortran, Java, Python, Rust, etc. A common way of
referring the this idiom of using functionality written in another programming
language from directly within R is “wrapping” since we’re putting an R “shell”
around the code from the other language. Another term you may see used is
“extending” (hence the title of the “Writing R Extensions” R manual).

While R supports using this this extension mechanism from any R script leav-
ing tiny trails of R and other language source and binary files all across your
filesystem is not exactly the best way to keep these components organized and
creates other challenges when you come across the need to use them in other
projects or share them with others. Thankfully, the R Core team, along with
many individual contributors over the years, has made it pretty straightforward
to incorporate this extension capability into R packages which are much easier
(honest!) to organize and share.

The goal of this book is to help you get up to speed using R and RStudio to
write R packages that wrap code from many different languages to help you “get
stuff done” with as little friction as possible.

L«Writing R Extensions”; Chapter 5, “System and foreign language interfaces”;
(https://cran.r-project.org/doc/manuals/r-release/R-exts. html#System-and-foreign-
language-interfaces)

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#System-and-foreign-language-interfaces
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#System-and-foreign-language-interfaces

4 CHAPTER 2. INTRODUCTION
2.1 Base Requirements

It is assumed that readers are familiar with the R programming language, RStu-
dio IDE, and are comfortable installing and using packages. Since this work is
about extending R with other programming languages, you should also have
some knowledge of one or more of the target languages being covered.

To follow along with the series you’ll need to ensure you have the necessary
components installed along the way. Rather than overwhelm you with all of
them up front, each new section will introduce requirements specific to the
language or situation being covered. However, there are some fundamentals
you’ll need to ensure are available.

o An R? environment, preferably R 3.6.x which is what was used for this
series.

« RStudio®, as we’ll be using many of the features provided in it to help
reduce development friction

o The {pkgbuild}* package installed

Once you've gotten through those steps, you should fire up RStudio and run:
pkgbuild: :check_build_tools(debug = TRUE)

which will help you make sure your particular system is ready to build packages.

After performing the build tool check and/or installation of the necessary core
tools, you will then need to install the {devtools}® package, which will help
ensure that the remaining core packages required are installed.

We're also going to use the git® source code version control system. The git
ecosystem is not “GitHub”, which is just a public (or, potentially somewhat
private) place to house source code repositories, just like other hosted services
such as Bitbucket, GitLab, or SourceHut. You can use the excellent “Happy
Git with R”" resource to help ensure you’re source code control environment is
also ready to use.

2.2 Supplemental References

It may be helpful to create a browser bookmark folder for supplemental reference
material that will be referred to from time-to-time across the sections (we’ll be
adding to this list in each chapter, too):

2R Project Home (https://www.r-project.org/)

3RStudio Home (http://rstudio.com/)

4{pkgbuild} CRAN page (https://cran.rstudio.com/web/packages/pkgbuild/)
5{devtools} Home (https://devtools.r-lib.org/)

6git Home (https://git-scm.com/)

"Happy Git with R (https://happygitwithr.com/)

https://www.r-project.org/
http://rstudio.com/
https://cran.rstudio.com/web/packages/pkgbuild/
https://devtools.r-lib.org/
https://git-scm.com/
https://happygitwithr.com/

2.3. UP NEXT)

o Writing R Extensions (https://cran.r-project.org/doc/manuals/r-release/
R-exts.html)

o Advanced R (http://adv-r.had.co.nz/)

o R Packaged (http://r-pkgs.had.co.nz/)

2.3 Up Next

If you’ve been a user of “development versions” of R packages or have authored
R packages you likely made quick work of this first installment. Those new to
creating packages with R, those who tend to only use fully-baked CRAN versions
of R packages, and/or those who have not worked with git before likely had
to do quite a bit of work to get down to this point (if this describes you, you
definitely deserve both a break and kudos for getting this far!).

In the next installment we’ll make sure the package building infrastructure is
ready to roll by creating a basic R package that we’ll use as a building block for
future work.

https://cran.r-project.org/doc/manuals/r-release/R-exts.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://adv-r.had.co.nz/
http://r-pkgs.had.co.nz/

CHAPTER 2. INTRODUCTION

Chapter 3

Building A Basic R Package

Before we start wrapping foreign language code we need to make sure that basic
R packages can be created. If you've followed along from the previous chapter
you have everything you need to get started here. Just to make sure, you should
be able to fire up a new RStudio session and execute the following R code and
see similar output. If not, you’ll need to go through the steps and resources
outlined there before continuing.

pkgbuild: :check_build_tools()
Your system is ready to butld packages!

3.1 Configuring {devtools}

We're going to rely on the {devtools} package for many operations and the
first thing you should do now is execute help("create", "devtools") in an
RStudio R console to see the package documentation page where you'll see guid-
ance pointing you to devtools: :use_description() that lists some R session
options() that you can set to make your package development life much easier
and quicker. Specifically, it lets you know that you can setup your ~/.Rprofile
to include the certain options settings which will automatically fill in fields each
time you create a new package vs you either specifying these fields manually in
the package creation GUI or as parameters to devtools: :create().

A good, minimal setup would be something like:

options(
usethis.description = list(
“Authors@R™ = 'person("Some", "One", email = "someone@example.com", role = c("aut", "cre"),

comment = c(ORCID = "YOUR-ORCID-ID"))',
License = "MIT + file LICENSE"

8 CHAPTER 3. BUILDING A BASIC R PACKAGE

)

NOTE: If you do not have an “ORCID” you really should get one (they’re free!)
by heading over to — https://orcid.org/ — and filling in some basic information.

Take a moment to edit your ~/.Rprofile. If you're not sure about how to do
that there is an excellent chapter in Efficient R Programming® which walks you
through the process.

Once you've added or verified these new options() settings, restart your R
session.

3.2 Creating A Package

We're almost ready to create and build a basic R package. All R packages live in
a package directory and I highly suggest creating a packages directory right off
your home directory (e.g. “~/packages”) or someplace where you'll be able to
keep them all organized and accessible. The rest of these chapters will assume
you're using “~/packages” as the

With {devtools} now pre-configured, use the RStudio R Console pane to execute
the following code which should produce similar output and open up a new
RStudio session with the new package directory:

devtools: :create("~/packages/myfirstpackage")

Creating '/Users/someuser/packages/myfirstpackage/"’

Setting active project to '/Users/someuser/packages/myfirstpackage’

Creating 'R/’

Writing 'DESCRIPTION'

Package: myfirstpackage

Title: What the Package Does (One Line, Title Case)

Version: 0.0.0.9000

Authors@R (parsed):

* Bob Rudtis <bob@rud.is> [aut, cre] (<https://orcid.orqg/0000-0001-5670-2640>)
Description: What the package does (one paragraph).

License: MIT + file LICENSE

Encoding: UTF-8

LazyData: true

Writing 'NAMESPACE'

Writing 'myfirstpackage.Rproj’

Adding '.Rproj.user' to '.gitignore'

Adding '“myfirstpackage\\.Rproj$', '“\\.Rproj\\.user$' to '.Rbuildignore’

!Efficient R, Programming, “3.3 R Startup”; (https://csgillespie.github.io/efficientR /3-3-1-
startup.html#r-startup)

https://orcid.org/
https://csgillespie.github.io/efficientR/3-3-r-startup.html#r-startup
https://csgillespie.github.io/efficientR/3-3-r-startup.html#r-startup

3.3. ROUNDING OUT THE CORNERS 9

Opening '/Users/someuser/packages/myfirstpackage/' in new RStudio session
Setting active project to '<mo active project>'

The directory structure will look like this:

DESCRIPTION
NAMESPACE

R/
myfirstpackage.Rproj

At this point we still do not have a “perfect” R package. To prove this, use the
R console to run devtools: :check() and — after some rather verbose output
— you’ll see the following lines at the end:

> checking DESCRIPTION meta-information ... WARNING
Invalid license file pointers: LICENSE

0 errors | 1 warning x | O notes

Since we're saying that our package will be using the MIT license, we need
to ensure there’s an associated LICENSE file which we can do by executing
usethis::use_mit_license() which will create the necessary files and ensure
the License field in the DESCRIPTION file is formatted properly.

If you run devtools: :check() again, now, your final line should report:

0 errors | 0 warnings [O notes

and the package directory tree should look like this:

DESCRIPTION

LICENSE

LICENSE.md

NAMESPACE

R/
myfirstpackage.Rproj

3.3 Rounding Out The Corners

While we have a minimum viable package there are a few other steps we
should take during this setup phase. First we’ll setup our package to use
{roxygen2}? for documenting functions, declaring NAMESPACE imports, and
other helper-features that will be introduced in later chapters. We can do this
via usethis: :use_roxygen_md():

2{roxygen2} Home; (https://roxygen2.r-lib.org/)

https://roxygen2.r-lib.org/

10 CHAPTER 3. BUILDING A BASIC R PACKAGE

usethis: :use_roxygen_md()

Setting Rozygen field imn DESCRIPTION to 'list(markdown = TRUE)'
Setting RozxzygenNote field im DESCRIPTION to '7.0.2'

Run “devtools::document ()"

We won'’t run devtools: :document () just yet, though. Before we do that we’ll
also create an R file where we can store top-level package introduction/meta-
information:

usethis: :use_package_doc()
Writing 'R/myfirstpackage-package.R'

Now, our directory tree should look like:

DESCRIPTION
LICENSE
LICENSE.md
NAMESPACE
R
myfirstpackage-package.R
myfirstpackage.Rproj

Now, run devtools::document () which will translate the {roxygen2} com-
ments into a properly-formatted R documentation file and regenerate the
NAMESPACE file (as we’ll be managing package imports and exports via
{roxygen2} comments). The directory tree will now look like:

DESCRIPTION
LICENSE
LICENSE.md
NAMESPACE
R
myfirstpackage-package.R
man
myfirstpackage-package.Rd
myfirstpackage.Rproj

and, we can now re-run devtools: :check() to make sure we have the three
“0’s” we're aiming for each time we check our package for errors.

3.4 Passing The Test

We're going to want to write and use tests to ensure our package works prop-
erly. There are many R package testing frameworks available. To ease the
introduction into this process, we’ll use one of the frameworks that came along

3.5. GETTING THINGS UNDER CONTROL 11

for the ride when you installed the various packages outlined in the previous
chapter: {testthat}3. Setting up {testthat} is also pretty painless thanks to the
{usethis} package we’ve been taking advantage of quite a bit so far. We’ll cre-
ate the {testthat} overall infrastructure then add a placeholder test script since
devtools: :check() will complain about no tests being available if we do not
have at least a single script it can execute during the test phase of the package
checking process.

usethis: :use_testthat ()

Adding 'testthat' to Suggests field im DESCRIPTION

Creating 'tests/testthat/’

Writing 'tests/testthat.R’

Call “use_test() ™ to initialize a basic test file and open it for editing.

usethis: :use_test("placeholder")

Increasing 'testthat' wersion to '>= 2.1.0' in DESCRIPTION
Writing 'tests/testthat/test-placeholder.R'

Modify 'tests/testthat/test-placeholder.R'

The directory tree will now look like this:

DESCRIPTION
LICENSE
LICENSE.md
NAMESPACE
R
myfirstpackage-package.R
man
myfirstpackage-package.Rd
myfirstpackage.Rproj
tests
testthat
test-placeholder.R
testthat.R

Run devtools: :check() one more time to make sure we’ve got those precious
3 “0’s” one last time.

3.5 Getting Things Under Control

We're almost done! One final step is to turn this directory into a git-managed
directory so we can work a bit more safely and eventually share our development
work with a broader audience. Provided you followed the outline in the previous
chapter, setting up git is as straightforward as one {usethis} function call:

3{testthat} Home; (https://testthat.r-lib.org/)

https://testthat.r-lib.org/

12 CHAPTER 3. BUILDING A BASIC R PACKAGE

usethis: :use_git()

Setting active project to '/Users/someuser/packages/myfirstpackage’
Initialising Git repo

Adding '.Rhistory', '.RData' to '.gitignore'’

There are 10 uncommitted files:

* '.gitignore’

* '.Rbuildignore’

* 'DESCRIPTION'

* 'LICENSE'

* 'LICENSE.md'

* 'man/’

* 'myfirstpackage.Rproj’
* 'NAMESPACE'

* 'R/’

* 'tests/’

Is it ok to commit them?
##

1: For sure

2: Negative

3: Not mow

##

Selection: 1

Adding files

Commit with message 'Initial commit'
A restart of RStudio ts required to activate the Git pane
Restart now?

##

1: Negative

2: Not mow

3: Yup

##

Selection: 3

RStudio should have been restarted (so it can add a “Git” pane in case you want
to use the GUI to manage git) and the directory tree will now have a .git/
subdirectory that you should (almost) never touch by hand.

The last thing to do is to “vaccinate” your git setup so you don’t leak sensitive
or unnecessary files when you (eventually) share your creation with the world:

usethis::git_vaccinate()
Adding '.Rproj.user', '.Rhistory', '.Rdata' to '/Users/someuser/.gitignore'’

We now have a basic, working R package that is devoid of any real functionality
other than that of getting us familiar with the package setup and validation
processes. We’ll be building upon this experience in most of the coming chapters.

3.7. EXERCISES 13
3.6 Quick Reference

After ensuring you’ve got the recommended options() in place, here are the
steps to setup a new package:

in any RStudio R Console session
devtools: :create("~/packages/THE-PACKAGE-NAME")

in the newly created package RStudio R Console session:

usethis::use_mit_license() # need a LICENSE file

usethis: :use_roxygen_md() use {rozygen2} for documentation and configuration

usethis: :use_package_doc() setup a package-level manual page

usethis::use_testthat () setup testing infrastructure

usethis: :use_test("placeholder") setup a placeholder test file

devtools: :document () Let {rozygen2} create NAMESPACE entries, build manual pages (
devtools: :check() looking for the three "0O's" that tell us we're ready to roll!
usethis: :use_git() put the directory under git version control
usethis::git_vaccinate() Prevent leaking credentials and other unnecessary filesystem ¢

HOW OO R R R W

Rather than re-type devtools: :document () (et al) whenever you need to run
{roxygen2} or build/check a package you can use RStudio keyboard shortcuts
that are designed to seamlessly integrate with the {devtools} ecosystem:

Operation Windows & Linux Mac {devtools} equivalent
Install and Restart Ctrl+Shift+-B Cmd+Shift+B devtools::install()
Load All (devtools) Ctrl+Shift+L Cmd+Shift+L devtools::load_ all()
Test Package (Desktop) — Ctrl+Shift+T Cmd+Shift+T devtools::test()

Test Package (Web) Ctrl+Alt+F7 Cmd+Alt+F7 devtools:test()
Check Package Ctrl+Shift+E Cmd+Shift+E devtools::check()
Document Package Ctrl+Shift+D Cmd+Shift+D devtools::document/()

We'll refer to these operations as “install” (or “build”), “load all”, “test”,
“check”, and “document” from now on so you can choose to use the console or
the shortcuts as you prefer.

3.7 Exercises

Our package may be kinda, well, useless for the moment but that doesn’t mean
you can’t show it some love and get some practice in at the same time while
things are still relatively straightforward.

e Modify the Title, Version, and Description fields of the DESCRIPTION
file and refine them as needed until package checks pass.

14 CHAPTER 3. BUILDING A BASIC R PACKAGE

e Deliberately mangle parts of the DESCRIPTION file to see what errors or
warnings you receive during the package check process.

e Read up on {roxygen2} and add some Sections to it formatted with
markdown and/or LaTeX. Re-“document” the package and see how your
changes look.

e Edit the test-placeholder.R file and change the placeholder test it cre-
ated so it fails and then re-check the package to see what warnings or
errors show up.

o After you've made (valid, working) modifications to any/all of the above
and package checks pass, use either the git command line tools or the
RStudio Git pane to add your updates to the git tree. Use the resources
linked to in the previous chapter if you need a refresher on how to do that.

¢ Re-run through all the steps with a brand new package name just to make
sure you're comfortable with the package creation process.

3.8 Up Next

In the next installment in the series we will start wrapping by creating a basic
wrapper that just calls out to the operating system shell to run commands.

	Preface
	Introduction
	Base Requirements
	Supplemental References
	Up Next

	Building A Basic R Package
	Configuring {devtools}
	Creating A Package
	Rounding Out The Corners
	Passing The Test
	Getting Things Under Control
	Quick Reference
	Exercises
	Up Next

